Radiometric dating and astronomical dating

Part 1 (in the previous issue) explained how scientists observe unstable atoms changing into stable atoms in the present.

Part 2 explains how scientists run into problems when they make assumptions about what happened .

So we know that anything that is experiencing radioactive decay, it's experiencing exponential decay.

And we know that there's a generalized way to describe that.

And then either later in this video or in future videos we'll talk about how it's actually used to date things, how we use it actually figure out that that bone is 12,000 years old, or that person died 18,000 years ago, whatever it might be. So let me just draw the surface of the Earth like that. So then you have the Earth's atmosphere right over here. And 78%, the most abundant element in our atmosphere is nitrogen. And we don't write anything, because it has no protons down here. And what's interesting here is once you die, you're not going to get any new carbon-14. You can't just say all the carbon-14's on the left are going to decay and all the carbon-14's on the right aren't going to decay in that 5,730 years.

It's just a little section of the surface of the Earth. And that carbon-14 that you did have at you're death is going to decay via beta decay-- and we learned about this-- back into nitrogen-14. So it'll decay back into nitrogen-14, and in beta decay you emit an electron and an electron anti-neutrino. But essentially what you have happening here is you have one of the neutrons is turning into a proton and emitting this stuff in the process. So I just said while you're living you have kind of straight-up carbon-14. What it's essentially saying is any given carbon-14 atom has a 50% chance of decaying into nitrogen-14 in 5,730 years.

They also measure the sand grains in the bottom bowl (the daughter isotope, such as lead-206 or argon-40, respectively).

What I want to do in this video is kind of introduce you to the idea of, one, how carbon-14 comes about, and how it gets into all living things. They can also be alpha particles, which is the same thing as a helium nucleus. And they're going to come in, and they're going to bump into things in our atmosphere, and they're actually going to form neutrons. And we'll show a neutron with a lowercase n, and a 1 for its mass number. And what's interesting about this is this is constantly being formed in our atmosphere, not in huge quantities, but in reasonable quantities. Because as soon as you die and you get buried under the ground, there's no way for the carbon-14 to become part of your tissue anymore because you're not eating anything with new carbon-14.

radiometric dating and astronomical dating-2radiometric dating and astronomical dating-8radiometric dating and astronomical dating-20radiometric dating and astronomical dating-37

When we look at sand in an hourglass, we can estimate how much time has passed based on the amount of sand that has fallen to the bottom.

By "age" we mean the elapsed time from when the mineral specimen was formed.

Radioactive elements "decay" (that is, change into other elements) by "half lives." If a half life is equal to one year, then one half of the radioactive element will have decayed in the first year after the mineral was formed; one half of the remainder will decay in the next year (leaving one-fourth remaining), and so forth.

And then you can use that rate to actually determine how long ago that thing must've died. It would be a pretty reasonable estimate to say, well, that thing must be 5,730 years old.

In the last video, we give a bit of an overview of potassium-argon dating.

Radiometric dating and astronomical dating